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● Quark propagator is fundamental when building models of QCD

✦ In QCD M(p2) must run & give perturbative limit

● A constant constituent mass is phenomenologically successful

✦ Constituent quark models for spectroscopy

✦ NJL models for meson and baryon static properties

● Can we identify observables that are sensitive to M(p2)

✦ If so can experiment help constrain M(p2) within DSE framework
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1

m2

G

gµν γν g2 Dµν(p − k)Γν(p, k)

−1

=
−1

+

● QCDs Gap Equation: S(p) = Z(p2)/
[

i/p + M(p2)
]
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● Compare observables within one framework with different interactions

● Experiment will constrain interaction ⇐⇒ quark–gluon vertex

● Knowledge of quark–gluon vertex provides αs(Q
2) within DSEs

✦ also gives β-function and may shed light on confinement
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−1

=
−1

+

S(p) =
Z(p2)

i/p + M(p2)
D(p) =

(

δµν +
pµpν

p2

)

∆(p2)

● Given a quark–gluon vertex
we can solve for M(p2)
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A. C. Aguilar et al, Phys. Rev. D81, 034003 (2010).
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DSE and the Maris–Tandy Model
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● Clearly need a sensible truncation scheme

✦ must maintain symmetries of theory

✦ rainbow-ladder truncation is one such scheme

● Maris–Tandy – ansätze for gluon propagator and quark-gluon vertex

1

4π
g2 Dµν(p − k) Γν(p, k) −→ αeff(p − k) Dfree

µν (p − k) γν

● Build in the correct
perturbative limit

αeff(k
2)

k2
→∞

−→
π γm

ln
(

k2/Λ2

QCD

)

A. Holl, et al, Phys. Rev. C 71, 065204 (2005)
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T = K + T K =⇒ Γ = Γ K

● Mesons show up as poles in the two-body T -matrix

● What is the BSE kernel: must preserve symmetries

✦ e.g. Axial–Vector Ward–Takahashi Identity

qµ Γµ,i
5

(p′, p) = S−1(p′) γ5
1

2
τi + 1

2
τi γ5 S−1(p) + 2m Γi

π(p′, p)

● Kernels of gap and BSE must be intimately related

−1

=
−1

+
⇐⇒ K

● Maris–Tandy: excellent description of light pseudoscalar and vector
mesons – 31 masses/couplings/radii with rms error of 15%
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Γ = Γ

Γ Γ

● Pion BSE vertex has the general form

Γπ(p, k) = γ5

[

Eπ(p, k) + /pFπ(p, k) + /k k · pG(p, k) + σµνkµpν H(p, k)
]

● Use Ball-Chiu Ansatz for quark–photon vertex: satisfies WTI

Γµ
BC(p′, p) = γµ ΣA(p′2, p2) + Pµ ∆B(p′2, p2) + Pµ /P ∆A(p′2, p2)



Some Consequences of Running Quark Mass

10 /27

● L. X. Gutierrez-Guerrero el al., Phys. Rev. C81, 065202 (2010) [arXiv:1002.1968 [nucl-th]].

● T. Nguyen, A. Bashir, C. D. Roberts, P. C. Tandy,[arXiv:1102.2448 [nucl-th]]

● In gap equation use simpler kernel

g2 Dµν(p − k)Γν(p, k) → 1

m2

G

gµν γν

✦ Quark no longer has a running mass

● Pion PDF x → 1: contact – q(x) ∼ (1 − x)1; DSE – q(x) ∼ (1 − x)2
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● Maris–Tandy has been successful, however it does breakdown

✦ e.g. excited states, ρ − a1 mass splitting, . . .

● Clear signal that the Maris–Tandy quark–gluon vertex is too simple

● Inability to construct new Bethe–Salpeter kernel blocked progress

● However, it is now possible to formulate an Ansatz for Bethe-Salpeter
kernel given any form for the dressed-quark-gluon vertex

✦ L. Chang and C. D. Roberts, Phys. Rev. Lett. 103, 081601 (2009)

● This enables direct connection between experiment and a general
quark–gluon vertex with DSE framework



Quark–Gluon and Quark–Photon Vertices
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q

p

p′

=
q

p

p′

+
q

p

p′

● Quark–gluon and quark–photon vertices have same Lorentz structure

Γµ(p′, p) =
∑12

i=1
λµ

i fi(p
′2, p2, q2) = Γµ

L + Γµ
T

● Coupling of photon to quark is given by inhomogeneous BSE

✦ properties dictated by quark propagator and quark–gluon vertex

● Ward-Takahashi identity constrains Γµ
L for quark–photon vertex

qµ Γµ
γqq = qµ Γµ

L = Q̂
[

S−1(p′) − S−1(p)
]

, qµ Γµ
T = 0

● Constituent quarks are strongly dressed by gluons

✦ therefore expect sizable transverse form factors – c.f. nucleon
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● Include σµνqν τ5(p
′, p) [anomalous chromomagnetic] term in

quark–gluon vertex

✦ has been absent from previous calculations

● Generates anomalous electromagnetic term in quark–photon vertex

● Confined quarks =⇒ no mass shell – anomalous mm ill defined

✦ however associate with iσµνqν piece of quark–photon vertex

q

p

p′

=
q

p

p′

+
q

p

p′

● L. Chang, Y. -X. Liu, C. D. Roberts, Phys.

Rev. Lett. 106, 072001 (2011).

● Investigate effect on
nucleon form factors 0 1 2 3 4 5
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Nucleon and the Faddeev Equation
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● Consistency =⇒ solve Faddeev Equation with DSE kernel

Γ = Γ + Γ + Γ

✦ G. Eichmann et al., Phys. Rev. Lett. 104, 201601 (2010).

● Instead we approximate nucleon as a quark–diquark bound state

Γ = Γ

● Include scalar and axial-vector diquarks

● For masses quark–diquark approx results agree to within 5%

● Equation has discrete solutions at p2 = m2

i ; nucleon, roper, etc

✦ Yields Faddeev amplitude describes quark-diquark relative motion



Nucleon Electromagnetic Current
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● Current conservation requires the following diagrams:

● Dressed quark–photon vertex

✦ longitudinal piece, Γµ
L, constrained by WTI

✦ transverse piece, Γµ
T , include iσµνqν term

● Predictions for nucleon form factors to Q2 ∼ 10 − 15 GeV2
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● τ5 is the anomalous magnetic moment term in quark–photon vertex
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● DSE results now include the anomalous electromagnetic term

✦ important for low to moderate Q2

● Reasonable description of nucleon form factors

● DSE model for nucleon can be improved

✦ need to include ρ and ω contribution to Γµ
γqq
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● S. Riordan, et al Phys. Rev. Lett. 105, 262302 (2010)

● DSE prediction agrees with this recent data
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● Find that at Q2 = 0 two results agree rather well

● Reinforces the notion that a constant constituent mass is a reasonable
approximation to low energy QCD

✦ provided symmetries are preserved

✦ good for calculating static properties: mag. moments, PDFs, etc

● However for Q2 6= 0 operators – running mass is important
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● N∗ manifests as second pole in Faddeev equation kernel

✦ MN = 0.940 GeV and MN∗ = 1.8 GeV

✦ Agrees very well with EBAC value for quark core mass

● “Wavefunction” is given by eigenvector at pole: p2 = m2

i

● For contact model N, N∗ “wavefunction” has the simple form

Γ(p) =

[

α1

α2
pµ

M
γ5 + α3 γµγ5

]

u(p)

● For the nucleon: α1 = 0.43, α2 = 0.024, α3 = −0.45

● For the Roper: α1 = 0.0011, α2 = 0.94, α3 = −0.051

● For nucleon scalar and axial–vector diquarks equally dominant

● However, N∗ is complete dominated by the axial–vector diquark



A Radial Excitation
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● Nucleon and Roper angular momentum must satisfy:

J =
1

2
=

1

2
∆Σ + Lq + Jg

● For nucleon experiment gives

∆Σ = 0.33 ± 0.03(stat.) ± 0.05(syst.) [COMPASS & HERMES]

● Contact interaction gives:

∆ΣN = 0.68 − 0.21 = 0.47, ∆ΣN∗ = −0.02 + 0.01 ≃ 0.0

● Result =⇒ subtle cancellation between quark and diquark spin states

✦ e.g. axial–vector diquark now has greater probability to have spin
opposite nucleon
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● Note these results are obtained within the constant mass function
framework

✦ therefore moderate to large Q2 behaviour is poor

● Pion cloud effects have been ignored

✦ expect magnetic moments and radii to be too small

● However we find N∗ radii are 10% larger than the nucleons

● Find a zero in both F1 and F2 for Roper
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● Contributions originate from the following diagrams

p

k

p − k p′ − k

p′

q

+
p

p − k p′ − k

q

k

p′

● Find that N∗ form factors are axial–vector diquark dominated
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● Contributions originate from the following diagrams

p
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● Find that N∗ form factors are axial–vector diquark dominated
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● The photon–axial-vector diquark vertex has the form

Λµ,αβ
ax =

[

gαβ F1(Q
2) − qαqβ

2M2
a

F2(Q
2)

]

(p + p′)µ −
(

qα gµβ − qβ gµα
)

F3(Q
2)

● The three axial-vector diquark form factors are positive definite

● Cancellations between pieces of diagram give zero in F2 p→N∗

● This zero is directly related to the zeros in the N∗ form factors
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● A thorough understanding of hadron structure requires a
nonperturbative, symmetry preserving framework

✦ Poincaré covariance, chiral symmetry, current conservation, etc

● Dyson–Schwinger equations provides such a framework

✦ single approach that combines UV and IR physics

✦ incorporates both quarks AND gluons

● Confronting experiment within the DSE framework will hopefully shed
light on the non–perturbative structure of QCD

● Tried to highlight that form factors possibly provide the best empirical
constraints on non–perturbative structure within the DSE framework

✦ In particular the dressed quark–gluon vertex

● We have outlined a simple but intuitive picture regarding N → N∗

transition form factors ⇐⇒ axial–vector diquark dominance

✦ however much work still remains before a robust picture emerges
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